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Prostaglandins (PGs), present in minute amounts in most animal
cells, exhibit a wide range of potent pharmacological activity and
have spurred scores of imaginative synthetic stutligecently,
Roberts, Morrow, and colleagues discovered a new class of epimeric
PGs, named isoprostanes and neuroprostanes, which feddure
dialkyl stereochemistry at the cyclopentane rnghese PG-like
compounds are produced in vivo by nonenzymatic, free-radical-
induced peroxidation of arachidonic acid (AA) acid-4,7,10,13,-
16,19-docosahexaenoic acid (DHA), respectively, via phospholipid
endoperoxides. As DHA is particularly enriched in the brain,

neuroprostanes have been speculated as a potential marker of

oxidative injury such as Alzheimer’s disease or Parkinson’s disease.
Preparation of isoprostanes and neuroprostanes is indispensable t
supplying sufficient quantities for their in vivo detection and
identification, as well as investigation of biological activityVe
herein report a novel, stereoselective synthesis d@dRGR, (1)

and the PGfg-like neuroprostang, which is anticipated to allow
access to related compounds and PGE-type derivatives as well.
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Several synthetic methods previously developedifer were
not well suited for the preparation & We chose to explore a
variant of Larock’s Pd(ll)-mediated three-component coupling of
3, ethyl vinyl ether, and an enorfto avoid use of a stoichiometric
amount of Pd(OAg)and a large excess of the enone component
required for Larock’s conceptually appealing procedure, we con-
sidered an intramolecular cross-coupling strategy dadlkyl iodide
and a tethered siloxane for selective installation of a functionalized
w-side chain by adaptation of Stork’s temporary silicon tether
strateg)y—8 Despite recent impressive advances in the palladium-
catalyzed cross-coupling reaction of organosilicon reagents, surpris-
ingly, no intramolecular version was known at the outset of our
investigatior? In addition, the use of alkyl halides in the Stille
reaction was typically limited to those containing no easily
accessible syps-hydrogent®

Treatment of )-3 with ethyl vinyl ether in the presence of NIS,
followed by subsequent hydrolysis, afforded iodoacétal 91%
overall yield (Scheme 1). Silylation ¢f with chlorodiisopropyl-
vinylsilanes5a—d provided6a—e in 84—92% yield, and6f was
prepared by mCPBA epoxidation 6& With 6a, several ligands
were next examined for the key palladium-mediated cyclization
by employing Pd(OAg)as a catalyst in the presence oflfin a
0.25 or 0.5 M solution of DMF. When dppp was usé@ was
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entry Ligand Et.N° Recovered 6a 7a
1 0.2 equiv PPh;, 2 equiv 26% 52%
2 0.4 equiv PPh; “ trace 65%
3 “ “ “ in CH,CN” 30% 46%
4 0.2 equiv P(o-Tol); 2 equiv 90% trace
5 0.2 equiv PCy, “ 42% 38%
6 0.2 equiv P(OEt), 85% 9%
7 0.2 equiv dppp trace 68%
8 ‘ “ 5 equiv. trace 73%

a(a) Reaction conditions: Pd(OAdp.1 equiv), ligand, EN, DMF (0.25
M), H20 (2 equiv), 80°C. (b) In DMF except for entry 3, which was run
in acetonitrile.

obtained in 73% yield. No activation by a fluoride was required to
promote transmetalation, but a small (2 equiv) amount of water
was found to be necessary. SimilarRg, 7¢, and7d were obtained

in 55, 51, and 55% vyields, respectively; a substituent at the allylic
position of a tethered siloxane was tolerated, but resulted in
diminished vyields. Not surprisingly, the presence of an olefin in
the side chain was detrimental to the palladium(ll)-mediated
cyclization, as6e produced7e only in poor (18%) vyield. In
comparison7f was isolated in 54% yield (at 80% conversion) from
6f.

In addition to the presumed Heck/sila-Stille sequence, several
possible mechanistic pathways were considered but discounted on
the following grounds: the tandem Heekleck sequence (involving
carbopalladation or radical ring closure, followed by in situ
protodesilylation) might seem an alternative pathway, but different
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Scheme 2 was next secured by a series of straightforward, albeit lengthy,
H transformations starting withO (Scheme 3). The target neuropros-
0 tane was then obtained uneventfully.
0.5 N HCI <:[ In summary, we have developed a new approach to isoprostanes

7c and neuroprostanes containiog-dialkyl stereochemistry at the

74% . TN cyclopentane ring by employing direct transfer of Bralkenyl
group via a silicon tether. The key step features an intramolecular
Stille cross-coupling reaction of aalkyl iodide and a tethered
alkenylsiloxane for stereoselective installation of a functionalized
w-side chain. Modification of the method of installation of the

1 a-side chain is underway to improve the overall synthetic efficiency.
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